Inverse polynomial images which consists of two Jordan arcs—An algebraic solution

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse polynomial images which consists of two Jordan arcs - An algebraic solution

Inverse polynomial images of [−1, 1], which consists of two Jordan arcs, are characterised by an explicit polynomial equation for the four endpoints of the arcs. MSC: 41A10; 30C10

متن کامل

Description of Inverse Polynomial Images which Consist of Two Jordan Arcs with the Help of Jacobi’s Elliptic Functions∗

First we discuss the description of inverse polynomial images of [−1, 1], which consists of two Jordan arcs, by the endpoints of the arcs only. The polynomial which generates the two Jordan arcs is given explicitly in terms of Jacobi’s theta functions. Then the main emphasis is put on the case where the two arcs are symmetric with respect to the real line. For instance it is demonstrated that t...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2007

ISSN: 0021-9045

DOI: 10.1016/j.jat.2007.03.003